บันทึกการเรียนครั้งที่ 3
คาบเรียนที่ 3 เป็นการเรียนรวมทั้ง 2 เซค อาจารย์ได้มอบหมายงานกลุ่ม โดยแบ่งตามกลุ่มที่ได้จัดไว้อาทิตย์ที่ผ่านมา
ซึ่งกลุ่มของดิฉันได้เรื่อง เสียง
เสียงเกิดขึ้นได้อย่างไร
เสียง เป็นคลื่นกลที่เกิดจากการสั่นสะเทือนของวัตถุ
เมื่อวัตถุเกิดการสั่นสะเทือน จะทำให้เกิดการอัดตัว และขยายตัวของคลื่นเสียง
และถูกส่งผ่านตัวกลางที่เป็นสสารอยู่ในสถานะ ก๊าซ ของเหลว ของแข็ง
(คลื่นเสียงจะไม่ผ่านสุญญากาศ) ไปยังหู ทำให้ได้ยินเสียงเกิดขึ้น
เสียงเกิดขึ้น เมื่อวัตถุหรือแหล่งกำเนิดเสียง มีการสั่นสะเทือน
ส่งผลต่อการเคลื่อนที่ของโมเลกุลของอากาศที่อยู่โดยรอบกล่าวคือโมเลกุลของอากาศเหล่านั้นจะเคลื่อนที่จากตำแหน่งแหล่งกำเนิดเสียงไปชนกับโมเลกุลของอากาศที่อยู่ถัดออกไป
จะเกิดการถ่ายโอนโมเมนตัมจากโมเลกุลที่มีการเคลื่อนที่ไปให้กับโมเลกุลของอากาศ
ที่อยู่ในสภาวะปกติ
จากนั้นโมเลกุลที่ชนกันจะแยกออกจากกันโดยโมเลกุลของอากาศที่เคลื่อนที่มาชนจะถูกดึงกลับไปยังตำแหน่งเดิมด้วยแรงปฎิกิริยา
และโมเลกุลที่ได้รับการถ่ายโอนพลังงาน ก็จะเคลื่อนที่ต่อไปและไปชนกับโมเลกุลของอากาศที่อยู่ถัดไป
เป็นดังนี้ไปเรื่อยๆ จนเคลื่อนที่ไปถึงหู เกิดการได้ยินขึ้น
ปรากฏการณ์นี้จะเกิดสลับกันไปมาได้เมื่อสื่อกลางหรือตัวกลางคืออากาศซึ่งมีคุณสมบัติยืดหยุ่น
การเคลื่อนที่ของโมเลกุลอากาศจะเกิดเป็นคลื่นเสียง
แหล่งกำเนิดเสียง
แหล่งกำเนิดเสียงคือ วัตถุที่ทำให้เกิดเสียง
เมื่อวัตถุนั้นเกิดการสั่นสะเทือน
แหล่งกำเนิดเสียงแต่ละชนิดจะทำให้กำเนิดเสียงที่มีความแตกต่างกันไประดับความดังของเสียงมีหน่วยวัดเป็น
เดซิเบล (db)
การเคลื่อนที่ของเสียง
การเดินทางของเสียง ต้องอาศัยตัวกลางในการเคลื่อนที่
เสียงมาถึงหูของเราโดยมีอากาศเป็นตัวกลาง
แหล่งกำเนิดเสียงจะทำให้อากาศรอบๆสั่นสะเทือน
การสั่นสะเทือนจะกระจายออกไปรอบทุกทิศทาง เมื่อคลื่นเดินทางมาถึงหูของเรา
เราจะรับรู้เสียงต่างๆ
การนำไปใช้ประโยชน์
นอกจากเราจะใช้เสียงในการสื่อสารระหว่างมนุษย์ด้วยกันและกับสัตว์อื่น
ๆ ยังมีการประยุกต์เอาเสียงไปใช้ในลักษณะต่างๆมากมาย เช่น
1. เสียงด้านวิศวกรรมและอุตสาหกรรม
วิศวกรใช้คลื่นเหนือเสียงในการตรวจสอบรอยร้าวหรือรอยตำหนิในโลหะ
แก้วหรือ เซรามิก โดยการส่งคลื่นเสียงที่มีความถี่ในช่วง 500 กิโลเฮิรตซ์ ถึง 15เมกะเฮิรตซ์ ผ่านเข้าไปในชิ้นงาน ที่ต้องการตรวจสอบ
แล้ววิเคราะห์ลักษณะของคลื่นสะท้อน หรือวิเคราะห์ลักษณะคลื่นที่รบกวนในคลื่นที่ผ่านออกไป
วิธีนี้นอกจากจะใช้ตรวจสอบชิ้นงานประเภทโลหะหล่อ หรือเซรามิกแล้ว
ยังถูกนำไปใช้ตรวจสอบยางรถยนต์ที่ผลิตใหม่ด้วย เครื่องมือวัดความหนาของแผ่นโลหะ
หรือวัสดุที่มีความแข็งอื่นๆ สามารถทำได้โดย ใช้คลื่นเหนือเสียง
แม้คลื่นจะไม่สามารถทะลุถึงอีกด้านหนึ่ง ของผิวหน้าแผ่นโลหะนั้นได้ก็ตาม เช่น
การตรวจสอบความหนาของหม้อต้มน้ำความดันสูงสำหรับโรงงานอุตสาหกรรมเป็นต้น
คลื่นเหนือเสียงพลังงานสูงยังถูกนำไปใช้อย่างกว้างขวางในการทำความสะอาดผิวของเครื่องใช้ขนาดเล็ก เช่น ชิ้นส่วนในนาฬิกาข้อมือและแว่นตา เป็นต้น เพื่อให้อนุภาคสกปรกที่จับเกาะผิวสั่นด้วยพลังงานของคลื่นเหนือเสียง เพราะความถี่ธรรมชาติของอนุภาคสกปรกตรงกันกับความถี่ธรรมชาติคลื่นเหนือเสียง คลื่นจึงทำให้อนุภาคสกปรกเหล่านั้นหลุดจากผิวโลหะไปลอยปะปนไปในของเหลวที่โลหะแช่อยู่
คลื่นเหนือเสียงพลังงานสูงยังถูกนำไปใช้อย่างกว้างขวางในการทำความสะอาดผิวของเครื่องใช้ขนาดเล็ก เช่น ชิ้นส่วนในนาฬิกาข้อมือและแว่นตา เป็นต้น เพื่อให้อนุภาคสกปรกที่จับเกาะผิวสั่นด้วยพลังงานของคลื่นเหนือเสียง เพราะความถี่ธรรมชาติของอนุภาคสกปรกตรงกันกับความถี่ธรรมชาติคลื่นเหนือเสียง คลื่นจึงทำให้อนุภาคสกปรกเหล่านั้นหลุดจากผิวโลหะไปลอยปะปนไปในของเหลวที่โลหะแช่อยู่
2. ด้านการแพทย์
การใช้เสียงย่านความถี่อุลตราโซนิค(เกิน 20,000 Hz) ในการตรวจวินิจฉัยทางการแพทย์
โดยอาศัยหลักการส่งคลื่นเข้าไปกระทบกับอวัยวะภายใน
แล้อาศัยคุณสมบัติการสะท้อนของเสียงออกมา
แล้วไปแปลงสัณญาณด้วยความพิวเตอร์เป็นภาพให้เห็นได้ เช่น
การตรวจหาเนื้องอกในร่างกาย , ตรวจลักษณะความสมบูรณ์และเพศของทารกในครรภ์การตรวจหัวใจด้วยคลื่นเสียงความถี่สูง(Echocardiography)
เป็นการตรวจหัวใจโดยใช้เครื่องมือที่มี ประสิทธิภาพสูง ทำงานโดยอาศัยหลัก การส่งคลื่นเสียงความถี่สูงซึ่งส่งออก มาจาก ผลึกแร่ชนิดพิเศษ และเมื่อรับสัญญานคลื่นเสียงที่ส่งออกไป นำมาแปรสัณญาน เป็นภาพขึ้น จะทำให้สามารถเห็นการทำงาน ของหัวใจ ขณะกำลังบีบตัว และคลายตัว และโดยการใช้เทคโนโลยีอันทันสมัย ทำให้ เราสามารถเห็น การไหลเวียนของเลือดผ่านช่องหัวใจ ห้องต่างๆเป็นภาพสี และเห็นการทำงาน ปิด-เปิด ของลิ้นหัวใจทั้งสี่ลิ้นได้
เป็นการตรวจหัวใจโดยใช้เครื่องมือที่มี ประสิทธิภาพสูง ทำงานโดยอาศัยหลัก การส่งคลื่นเสียงความถี่สูงซึ่งส่งออก มาจาก ผลึกแร่ชนิดพิเศษ และเมื่อรับสัญญานคลื่นเสียงที่ส่งออกไป นำมาแปรสัณญาน เป็นภาพขึ้น จะทำให้สามารถเห็นการทำงาน ของหัวใจ ขณะกำลังบีบตัว และคลายตัว และโดยการใช้เทคโนโลยีอันทันสมัย ทำให้ เราสามารถเห็น การไหลเวียนของเลือดผ่านช่องหัวใจ ห้องต่างๆเป็นภาพสี และเห็นการทำงาน ปิด-เปิด ของลิ้นหัวใจทั้งสี่ลิ้นได้
3. ด้านการประมงและสำรวจใต้น้ำ
ส่งคลื่นเสียง ลงไปใต้น้ำเพื่อการตรวจหาฝูงปลา และสิ่งแปลกปลอมกีดขวางภายใต้ทะเลลึกและการวัดความลึกของท้องทะเลโดยใช้หลักการของการสะท้อนเสียง
ซึ่งเรียกกันว่า “ระบบโซนาร์”
หลักการทำงาน
คลื่นเสียงความถี่สูงจะถูกส่งผ่านออกจากหัวตรวจที่เราเรียกว่า transducer ส่งไปที่หัวใจ ทำให้เกิดคลื่นเสียงสะท้อนกลับ เรียกว่า echo และระยะเวลา ที่ใช้ในการเดินทางของคลื่นเสียงสะท้อนกลับ จะแปรเปลี่ยนตามระยะทางที่ใช้ซึ่งก็คือ ระยะห่างของโครงสร้าง ต่างๆใน หัวใจ นั่นเอง แล้วคอมพิวเตอร์ในเครื่องจะทำการประมวลผลแปลสัญญาณออกมาเป็นภาพ
ความถี่ที่ใช้ในการทำส่วนใหญ่จะอยู่ในช่วงประมาณ 2-10 MHz แต่ที่ใช้บ่อยที่สุดคือประมาณ 2.5-5MHz ซึ่งจะเห็นว่าเป็นย่านความถี่สูงกว่าความถี่เสียงที่คนเราได้ยินคือ 2-18KHz
การใช้ความถี่ต่างกัน จะมีผลต่อความละเอียดของภาพและความสามารถในการส่งผ่านทะลุเข้าไปในเนื้อเยื่อ กล่าวคือ คลื่นความถี่ที่สูงกว่าจะให้ความละเอียดของภาพได้มากกว่า แต่ความสามารถในการทะลุเข้าเนื้อเยื่อจะได้น้อยกว่า ยกตัวอย่างเช่น ถ้าใช้คลื่นความถี่ 5MHz จะสามารถเห็นรายละเอียดของภาพได้ถึง 2 มิลลิเมตร ขณะที่คลื่นความถี่ 3MHz จะเห็นรายละเอียด ของภาพ ได้ในระดับ 3มิลลิเมตร แต่ขณะเดียวกันถ้าผู้ป่วยที่มีลักษณะอ้วนหรือตัวใหญ่ คลื่นที่มีความถี่สูงซึ่งทะลุเข้าเนี้อเยื่อได้น้อยกว่าคลื่นความถี่ต่ำกว่าก็อาจจะไม่สามารถมองเห็นภาพบางส่วนที่อยู่ลึกๆได้
คลื่นเสียงความถี่สูงจะถูกส่งผ่านออกจากหัวตรวจที่เราเรียกว่า transducer ส่งไปที่หัวใจ ทำให้เกิดคลื่นเสียงสะท้อนกลับ เรียกว่า echo และระยะเวลา ที่ใช้ในการเดินทางของคลื่นเสียงสะท้อนกลับ จะแปรเปลี่ยนตามระยะทางที่ใช้ซึ่งก็คือ ระยะห่างของโครงสร้าง ต่างๆใน หัวใจ นั่นเอง แล้วคอมพิวเตอร์ในเครื่องจะทำการประมวลผลแปลสัญญาณออกมาเป็นภาพ
ความถี่ที่ใช้ในการทำส่วนใหญ่จะอยู่ในช่วงประมาณ 2-10 MHz แต่ที่ใช้บ่อยที่สุดคือประมาณ 2.5-5MHz ซึ่งจะเห็นว่าเป็นย่านความถี่สูงกว่าความถี่เสียงที่คนเราได้ยินคือ 2-18KHz
การใช้ความถี่ต่างกัน จะมีผลต่อความละเอียดของภาพและความสามารถในการส่งผ่านทะลุเข้าไปในเนื้อเยื่อ กล่าวคือ คลื่นความถี่ที่สูงกว่าจะให้ความละเอียดของภาพได้มากกว่า แต่ความสามารถในการทะลุเข้าเนื้อเยื่อจะได้น้อยกว่า ยกตัวอย่างเช่น ถ้าใช้คลื่นความถี่ 5MHz จะสามารถเห็นรายละเอียดของภาพได้ถึง 2 มิลลิเมตร ขณะที่คลื่นความถี่ 3MHz จะเห็นรายละเอียด ของภาพ ได้ในระดับ 3มิลลิเมตร แต่ขณะเดียวกันถ้าผู้ป่วยที่มีลักษณะอ้วนหรือตัวใหญ่ คลื่นที่มีความถี่สูงซึ่งทะลุเข้าเนี้อเยื่อได้น้อยกว่าคลื่นความถี่ต่ำกว่าก็อาจจะไม่สามารถมองเห็นภาพบางส่วนที่อยู่ลึกๆได้
4. ด้านสถาปัตยกรรม
ดังที่กล่าวมาแล้วในเรื่องการสะท้อนของเสียงว่า
เสียงสะท้อนจากผนัง พื้น เพดาน ทำให้เกิดเสียงก้อง ดังเช่นการร้องเพลงในห้องน้ำที่มีผนังและพื้นมีกระเบื้องปู จะมีเสียงก้องจึงเหมาะกับการร้องเพลง เพราะทำให้ผู้ร้องเกิดความรู้สึกว่าการร้องเพลงในห้องน้ำเพราะกว่าการร้องใน ห้องธรรมดา ดังนั้น ห้องสำหรับฟังเพลงหรือร้องเพลงต้องมีการให้เสียงก้องเกิดขึ้นมากกว่าห้อง ทั่วไป แต่ก็ต้องมีค่าพอเหมาะสมไม่มากเกินไปจนฟังเพลงไม่รู้เรื่อง หรือเกิดความรำคาญ การออกแบบอาคาร ห้องประชุม ทั้งสถาปนิกและวิศวกรก็ต้องคำนวณล่วงหน้าว่าให้มีเสียงก้องมากหรือน้อยเพียง ใด โดยการใช้วัสดุเก็บเสียง เช่น พรม ม่าน
แผ่นกระดาษเก็บเสียง ฯลฯ เพื่อช่วยทำให้เวลาที่เกิดเสียงก้องพอเหมาะก่อนที่เสียงก้องจะจางหายไป
ปัจจุบันสถาปนิกมีปัญหาน้อยลง เพราะสามารถออกแบบให้ห้องมีเสียงก้องน้อยที่สุด เพื่อใช้ในการประชุม และเมื่อใดที่ต้องใช้ห้องเดิมในการแสดงดนตรีก็สามารถใช้เครื่องขยายเสียงที่ มีวงจรสำหรับสร้างเสียงก้องขึ้นมา ทำให้เสียงเพลง และเสียงดนตรีมีความไพเราะอย่างที่ควรจะเป็นคือมีเวลาก้องเสียงพอสมควร
ปัจจุบันสถาปนิกมีปัญหาน้อยลง เพราะสามารถออกแบบให้ห้องมีเสียงก้องน้อยที่สุด เพื่อใช้ในการประชุม และเมื่อใดที่ต้องใช้ห้องเดิมในการแสดงดนตรีก็สามารถใช้เครื่องขยายเสียงที่ มีวงจรสำหรับสร้างเสียงก้องขึ้นมา ทำให้เสียงเพลง และเสียงดนตรีมีความไพเราะอย่างที่ควรจะเป็นคือมีเวลาก้องเสียงพอสมควร
5. ด้านธรณีวิทยา
ในการสำรวจแหล่งแร่ด้วยการวิเคราะห์ชั้นหินต่างๆ นักธรณีวิทยาใช้วิธีการส่งคลื่นเสียงที่มีพลังงานสูงซึ่งได้จากการระเบิดของ ลูกระเบิดขนาดเล็กที่บริเวณผิวโลก คลื่นเสียงที่เกิดจากการระเบิดนี้จะทะลุผ่านชั้นต่างๆ ของเปลือกโลกลงไป เพราะเปลือกโลกประกอบด้วยชั้นหินที่มีลักษณะและความหนาแน่นแตกต่างกัน ทำให้คลื่นสะท้อนที่แต่ละชั้นของเปลือกโลกมีลักษณะแตกต่างกัน คลื่นเสียงสะท้อนนี้เมื่อกลับถึงผิวโลกจะเปลี่ยนเป็นสัญญาณไฟฟ้าเข้าสู่ อุปกรณ์เพื่อวิเคราะห์ต่อไป และผลที่ได้จะถูกนำมาเป็นข้อมูลหนึ่งของลักษณะชั้นหินต่างๆ ใต้ผิวโลก
ในการสำรวจแหล่งแร่ด้วยการวิเคราะห์ชั้นหินต่างๆ นักธรณีวิทยาใช้วิธีการส่งคลื่นเสียงที่มีพลังงานสูงซึ่งได้จากการระเบิดของ ลูกระเบิดขนาดเล็กที่บริเวณผิวโลก คลื่นเสียงที่เกิดจากการระเบิดนี้จะทะลุผ่านชั้นต่างๆ ของเปลือกโลกลงไป เพราะเปลือกโลกประกอบด้วยชั้นหินที่มีลักษณะและความหนาแน่นแตกต่างกัน ทำให้คลื่นสะท้อนที่แต่ละชั้นของเปลือกโลกมีลักษณะแตกต่างกัน คลื่นเสียงสะท้อนนี้เมื่อกลับถึงผิวโลกจะเปลี่ยนเป็นสัญญาณไฟฟ้าเข้าสู่ อุปกรณ์เพื่อวิเคราะห์ต่อไป และผลที่ได้จะถูกนำมาเป็นข้อมูลหนึ่งของลักษณะชั้นหินต่างๆ ใต้ผิวโลก
คำศัพท์
Architecture - สถาปัตยกรรม
Geology - ธรณีวิทยา
A Survey – สำรวจ
Reflection – การสะท้อน
The sound - เสียง
การประเมิน
ประเมินอาจารย์ อาจารย์ให้ค้นคว้าหาข้อมูลจากอินเทอร์เน็ต เพื่อการจัดทำผลงานสื่อ
ประเมินตนเอง ได้ค้นคว้าหาข้อมูลและได้ทราบข้อมูลที่ไม่เคยเรียนรู้มาก่อนหน้านี้
ประเมินเพื่อน เพื่อนแสดงความเห็นหลากหลายมากกว่าการนั่งทำคนเดียว
ไม่มีความคิดเห็น:
แสดงความคิดเห็น